I. A Preview of Calculus (2.1)

The concept of a Limit is central to all of calculus. Calculus developed from finding solutions to two main problems: the

Tangent Problem (leading to Differential Calculus) and the Area Problem (leading to Integral Calculus).

A. The Tangent Problem and Differential Calculus

Core Concept: Measuring the rate of change of a nonlinear function.

Concept Definition / Formula Example / Note

A line passing through two points

Secant Line P(a, f(a)) and Q(z, f(x)) on the
graph of f.
_ [@-f@) 14
Slope of.a Mgee = ——2—1 . This formula Example 2.1: For f(a:) — P(2,4),
Secant Line ( estimates the rate of change of the i Sl g N, 6.2 (D, = Al
Migec) function at a. 9, 0. sec — 0.

The line that the secant lines
approach as x approaches a. The

Tangent Line slope of this line measures the rate Solving the Tangent Problem involves taking

of change (the derivative) of the a limit.

function at a.

The value that the average velocities Example 2.2: A rock dropped from 64 ft with
Instantaneous approach as the time interval height s(t) = 64 — 16¢>. Average velocity
Velocity approaches zero. lt is the rate of approaching ¢ — 2 is between —15.84 and

change of the position function s(t). 16,16 ft /sec (Guess: —16 ft /sec).

Reminder: The process of letting « or ¢ approach a in an expression is called taking a limit.

y

(a, f(a))

a

slope of secant line

Figure 2.4 The slope of a secant line through a point
(@, f(a)) estimates the rate of change of the function at the

point (a, f(a)).

Check the demo:

https://calc1.drbin.top/outputs/secant_to_tangent.gif
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https://calc1.drbin.top/outputs/secant_to_tangent.gif

B. The Area Problem and Integral Calculus
Core Concept: Finding the area between a function's graph and the xz-axis over an interval.

Approximation: The area is approximated by dividing the interval into thin rectangles and summing their areas.

Integral Calculus: As the widths of the rectangles become smaller (approach zero), the sums of the areas approach the exact
area. Limits of this type serve as the basis for the definition of the definite integral.

Example 2.3: Estimating the area under f(z) = x> + 1 over [0, 3] using three rectangles yields an area estimate of 1 + 2 +
5 = 8 units®.

%
f(x) = x>+ 1
Figure 2.10 The area of the region under the curve of
fx) = x2+ 1 can be estimated using rectangles. f(x) = X +1

Il. The Limit of a Function (2.2)

A. Intuitive Definition of a Limit

Definition: Let f be defined in an open interval containing a, possibly excluding a itself, and let L be a real number. If all values
of f(x) approach the single real number L as the x-values approach a, then the limit of f(ac) as x approaches a is L.
Notation: lim, ,, f(z) = L.

Basic Limits (Theorem 2.1):

1. lim, ,, ¢ = a.

2. lim, ., ¢ = ¢ (where cis a constant).

Example (Graphical Evaluation): Example 2.6: For the function shown in Figure 2.15 (where f(—1) has a defined value not
on the curve), as « approaches —1 from either side, the values f(z) approach 3. Thus, lim,_, 1 f(z) = 3.



Evaluating a Limit Using a Graph

For g{x)} shown in Figure 2.15, evaluate  lim Ig{x}.
X = -

¥

. “A@

Figure 2.15 The graph of g(x) Includes one value not on a

smoath curve.
Reminder: The limit can exist even if
the function value f(a) is undefined, or if f(a) exists but is different from L.

B. Limits That Fail to Exist (DNE)
For the limit of a function to exist, the functional values must approach a single real-number value at that point.

Example (Oscillation): Example 2.7: For f(x) = sin(l/:c), as x approaches 0, the y-values do not approach any single
value; they oscillate wildly between —1 and 1. Therefore, lim,_,¢ sin(1/x) does not exist (DNE).
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Figure 2.17 The graph of f(x) = sin(1/x) oscillates rapidly

between —1 and 1 as x approaches 0.

C. One-Sided Limits

One-sided limits provide a more accurate description of function behavior, especially when a two-sided limit fails to exist.



Type Notation Description Citation

Limit from the Left limg .o f(z) =L T approaches a from values = < a.

Limit from the Right limg o+ f(z) =L T approaches a from values = > a.

Theorem 2.2: Relating One-Sided and Two-Sided Limits lim,_,, f(z) = L if and only if lim,_,,- f(z) = L and
lim, ,q+ f(z) = L.

Example (Jump Discontinuity): Example 2.8: For the piecewise function f(x) near z = 2 (Figure 2.18): lim, .5~ f(z) = 3

img o+ f(x) = 0. Since the one-sided limits are different, the two-sided limit lim,_,» f(x) DNE.
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. x+1lifx<?2
Figure 2.18 The graph of f(x) = has a

x2—4ifx22
break at x = 2.

D. Infinite Limits and Vertical Asymptotes (VA)

Definition (Infinite Limit): A function has an infinite limit at a if its values increase or decrease without bound as =
approaches a.

If f(x) increases without bound: lim,_,, f(z) = oo. If f(x) decreases without bound: lim,_,, f(z) = —oo.

Warning: When we write lim,, ,, f(a:) = 00, we are describing the behavior of the function, not asserting that a limit
exists. If the limit is infinite, we always write 0o (or —o0) rather than DNE.

Vertical Asymptote (Definition): The line = a is a vertical asymptote of the graph of f if any one-sided or two-sided limit
of f(z) as z approaches a is infinite.

Example (VA): Example 2.9 (and Figure 2.19): For f(z) = 1/x:lim, .o (1/2) = —o0. lim,_,¢+ (1/2) = co. The line
x = (0 is a vertical asymptote.



Yi

Figure 2.19 The graph of f(x) = 1/x confirms that the limit

as x approaches 0 does not exist.

lll. The Limit Laws (2.3)

Limit laws simplify the algebraic calculation of limits.

Theorem 2.5: Limit Laws (Assuming lim,_,, f(z) = L and lim,_,, g(z) = M, with L, M being real numbers):

Law Formula Condition

Sum Law limg o (f(z) +9(x)) =L+ M

Difference Law limg o (f(z) —g(x))=L—-M

Product Law lim, . (f(z)g(x)) = LM

Quotient Law lim, ,, % = % M #0

Power Law limg o [f(z)]” = L™ n is a positive integer

A. Limits of Polynomial and Rational Functions
Theorem 2.6 (Direct Substitution): Polynomials p(z): lim,_,, p(z) = p(a).

Rational Functions 7(z) = p(z)/q(z): I a is in the domain (g(a) # 0), then lim,_,, 7(z) = r(a).

22 —6x+5
x2—2

Example 2.16: lim,_.3

. L . . 32-6(3)+5 _
Since = 3 is in the domain, we substitute: 32(_%+ =32 178“’ = —%.




B. Additional Techniques for the Indeterminate Form 0/0

If direct substitution yields 2, the limit may still exist, and we must find a function g(z) identical to f(z) everywhere except at a.

-1
-1

E

gix)=x+1 fix) =
Figure 2.24 The graphs of f{x) and g(x) are identical for all x 3 1. Their limits at 1 are equal.

We see that

21 —1)(z+1
lim &=L iy @ V@D =2

z—1 ¢ —1 z—1 x—1 z—1

Evaluation Strategies (Problem-Solving Strategy 2.3):
1. Factoring and Canceling: Factor polynomials to cancel common factors.
Example 2.17:

2-9 -3 3
lim 2 :limw = lim(z + 3) = 6.
z—3 T — 3 r—3 x—3 r—3

Evaluating a Limit by Factoring and Canceling

2
Evaluate. lim —Z =32 _
3 2x* —bx—3

Solution
Step 1. The function f(z) = % is undefined for = 3. In fact, if we substitute 3 into the function we get 0/0,
which is undefined. Factoring and canceling is a good strategy:

) z? — 3z . z(z — 3)
lim ————— = lim
a3 202 — 5 — 3 z—3 (:B — 3)(2.’L’ + 1)

2
Step 2. For all z # 3, ﬁ = 3,57 Therefore,

. z(z — 3) . x
lim = lim
z—3 (;1: — 3)(2:1: + 1) z—3 2 + 1

Step 3. Evaluate using the limit laws:



. T 3
lim —
z—3 2T + 1 7

2. Multiplying by the Conjugate: Used if an expression involves a square root difference (e.g., v/ + 2 — 1).

Evaluating a Limit by Multiplying by a Conjugate

Evaluate lim ¥&2-1
r—1 z+1

Solution

Step 1. % has the form 0/0 at —1. Let’s begin by multiplying by v/ + 2 + 1, the conjugate of v/ + 2 — 1, on the
numerator and denominator:

.o Vr+2-—1 Do Vr+2—-1 Jr+2+1
lim —— = lim .
z——1 z+1 z——1 z+1 ve+2+1

Step 2. We then multiply out the numerator. We don’t multiply out the denominator because we are hoping that the (:r + 1)
in the denominator cancels out in the end:

lim z+1
e=-1(z+1)(vVe+2+1)

Step 3. Then we cancel:

1
= lim

-1/ 4+2+1

Step 4. Last, we apply the limit laws:

1 1
lim —— = —
eo-14/x+24+1 2

3. Simplifying Complex Fractions: Simplify the fraction algebraically first.

Evaluating a Limit by Simplifying a Complex Fraction

1 _1
z+1 2
z—1

Evaluate lim
z—1

Solution

L1
p)

Step 1. =

z—1

has the form 0/0 at 1. We simplify the algebraic fraction by multiplying by 2(z + 1) /2(x + 1):

T3 w3 2z+1)
=1z —1 @1 z—1  2(z+1)

Step 2. Next, we multiply through the numerators. Do not multiply the denominators because we want to be able to cancel
the factor (z — 1):

_ 2—(z+1)
T2 -1)(z+1)

Step 3. Then, we simplify the numerator:

. —x+1
= lim
=1 2(z —1)(z + 1)




Step 4. Now we factor out —1 from the numerator:

lim —(@—1)
=1 2(x — 1)(z + 1)

Step 5. Then, we cancel the common factors of (z — 1):

. -1

Step 6. Last, we evaluate using the limit laws:

-1 1

lim ———
4. Evaluating a Two-Sided Limit Using the Limit Laws

For the piecewise function:

dr—3 ifrx <2
(x—3)? ifz>2

evaluate each of the following limits:

a. lim f(z)

T—2-

b. lim f(z)

T—2+

c. lim f(z)

z—2

f(x)

\.

Figure 2.26 This graph shows a function fix).

Solution

a. Whenz — 2" (i.e., x approaches 2 from values less than 2), the function is defined by f(w) = 4x — 3. Using the limit
laws:

lim f(z) = lim (4 —3)=4-2—-3=5

T—27 T—2"

b. When 2 — 27 (i.e., x approaches 2 from values greater than or equal to 2), the function is defined by f(:z:) = (ar: —
3)?. Using the limit laws:



lim f(z) = lim (z —3)? = (2-3)* = (-1)? =1

z—2+ r—2+

c. For the two-sided limit lin% f(z) to exist, the left-hand limit and right-hand limit must be equal. Since lim f(z) =5
T— T—27

and lim f(z) = 1 are not equal:
r—2+F

lim f(z) does not exist
z—2

C. The Squeeze Theorem

Theorem 2.7 (The Squeeze Theorem): If h(z) < f(z) < g(z) over an open interval containing a, and lim,_,, h(z) = L
and lim,_,, g(x) = L (where L is a real number), then lim,,_,, f(z) = L.

¥i

Figure 2.27 The Squeeze Theorem applies when
Jilx) < pix) < hix) and Jt_Ji_1:|1ﬂ_,|’|{_x:| = lli_]:ndi:r{_x).

Key Trigonometric Limit: This theorem is crucial for proving that limy_. Sine(a) =

Proof:

Squeeze Theorem Proof

1. Geometric Inequality (for 0 < 6 < T

In the unit circle:

Dividing by sin(6) > 0:

>
—_

Taking reciprocals:

2. Limits of Bounding Functions



lim cos(f) =1

6—0
liml=1
0—0
3. Squeeze Theorem Application
Since for all @ € (0, %):
sin(6
cos(f) < 9( ) <1

and

By the Squeeze Theorem:

4. Alternative Area Proof

Using sector area comparison:

1 1 1
~si < Zg< =
5 sin(f) cos(0) < 26’ =3 tan(6)

Multiplying by 2:
sin(f) cos(0) < 6 < tan(6)

Dividing by sin(6):

0 1
cos(6) < sin(0) = cos(6)

Taking reciprocals gives the same inequality.
Check the gif demo:

https://calc1.drbin.top/outputs/sin_theta_limit_english.gif

IV. Continuity (2.4)

Intuitive Definition: A function is continuous if its graph can be traced with a pencil without lifting it from the page.

A. Continuity at a Point
Definition: A function f is continuous at a point a if and only if three conditions are satisfied:

1. f(a) is defined. (Prevents a hole/gap where the function value is missing).
2. lim,_,, f(z) exists. (Prevents a jump or oscillation).

3. lim, ,, f(z) = f(a). (Ensures the limit value matches the function value).

Example (Continuity Check):

2

Example 2.28: Determine if f(2) = £== forz # 1 and f(1) = 2 is continuous at z = 1.

z—1



https://calc1.drbin.top/outputs/sin_theta_limit_english.gif

1. f(1) = 2 (Defined).

Counterexample: f(a) is not defined.
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Figure 2.22 The function fx) 1s not continueus at a
because fla) is undefined.

2. lim,_,; f(z) = 2 (Exists, calculated by simplifying).

Counterexample: lim,,_,, f(x) does not exist.
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Figure 2.33 The function f(x) s not continueus at a
becanse xl]_lg.'iﬂf{l’} does not exist,

3. lim, 1 f(z) =2 = f(1). (Satisfied).

Counterexample: lim, ., f(x) # f(a).

¥i

e

Figure 2.24 The function fi(x) s not continueus at a
because xli_lpﬂf{x} # fla).

Conclusion: f is continuous at 1.

B. Types of Discontinuities



If f is discontinuous at a, the discontinuity is classified:

1. Removable Discontinuity: lim,_,, f(z) exists (is a real number L), but f(a) is either undefined or lim,_,, f(x) #
f(a). (Intuitively, a "hole" in the graph). Example 2.30: f(x) = ””;:24 atz = 2.lim,_,» f(x) = 4 exists, but f(2) is
undefined. This is a removable discontinuity.

2. Jump Discontinuity: Both lim,, .- f(a:) and lim,_,,+ f(:[:) exist (as real numbers) but are unequal. Example 2.31:
The piecewise function from Example 2.27 at = 3. Since lim,_,3- f(z) and lim,_,3+ f(z) exist but differ, it has a
jump discontinuity.

3. Infinite Discontinuity: lim,, ., f(x) or one of the one-sided limits is ==00. (Occurs at a vertical asymptote). Example
2.32: f(z) = 1/(x + 1) atx = —1. Since lim,_, 1 f(z) = o0, it has an infinite discontinuity.

C. The Intermediate Value Theorem (IVT)

Theorem 2.11 (IVT): If f is continuous over a closed, bounded interval [a, b], and z is any real number between f(a) and
£(b), then there exists a number c in [a, b] satisfying f(c) = z.

f{x)

& b
Figure 2.28 There is a number ¢ € [a, b] that satisfies

fle) =z

Key Application: Finding zeros (roots) of a function.

Example 2.36: Show f(z) = x3 — 4z + 2 has at least one zero over [0, 1]. Since f(z) is a polynomial, it is continuous.
f(0) =2and f(1) = 13 — 4(1) + 2 = —1. Since f(0) > 0 and f(1) < 0, and z = 0 is between —1 and 2, the IVT
guarantees a root c exists in [0, 1] such that f(c) = 0.

Reminder (IVT Requirement): The function must be continuous over the closed interval [a, b] for the theorem to apply.

V. The Precise Definition of a Limit (2.5)

This converts the intuitive idea of limits into a formal, rigorous mathematical definition (¢ — & definition).

A. Quantifying Closeness

€ (Epsilon): Represents the positive distance from the limit L. | f(x) — L| < e means f(z) is closer than € to L. § (Delta):
Represents the positive distance from a. 0 < |z — a| < § means z is closer than ¢ to a, and = # a.

B. The Epsilon-Delta Definition



Definition: lim,_,, f(z) = L if, for every € > 0, there exists a d > 0 such thatif 0 < |z — a| < §, then |f(z) — L| < e.

Part of Definition Interpretation Citation
For every e > 0 Universal Quantifier: For every positive distance € from L.
There existsad > 0 Existential Quantifier: There is a positive distance ¢ from a.

Tool for Proofs: The Triangle Inequality states that for any real numbers a and b, |a + b| < |a| + |b].

Example (Linear Proof - Example 2.39): Statement to prove: lim, ,3(2z + 1) = 7. Proof Sketch (Finding d): We start
with |f(z) — Ll < e |2z+1) -7 <e=>[2z—6|<e=2z—3|<e=|z— 3| <¢/2

Choose: § = €/2. Conclusion: If 0 < |z — 3| < €/2, then |(2z + 1) — 7| = 2|z — 3| < 2(e/2) = €. Therefore, the limit
is7.

C. Precise Definition of Infinite Limits
The € — ¢ definition can be modified for infinite limits using M (an arbitrarily large positive number) instead of €.
Definition (00): lim,_,, f(z) = oo if, for every M > 0, there exists § > 0 such thatif 0 < |z — a| < J, then f(x) > M.

Definition (—o0): lim,_,, f(z) = —oc if, for every N < 0, there exists § > 0 such thatif 0 < |z — a| < §, then f(z) <
N.



