
I. A Preview of Calculus (2.1)

The concept of a Limit is central to all of calculus. Calculus developed from finding solutions to two main problems: the
Tangent Problem (leading to Differential Calculus) and the Area Problem (leading to Integral Calculus).

A. The Tangent Problem and Differential Calculus

Core Concept: Measuring the rate of change of a nonlinear function.

Concept Definition / Formula Example / Note Citation

Secant Line
A line passing through two points 

 and  on the
graph of .

Slope of a
Secant Line (

)

. This formula
estimates the rate of change of the
function at .

Example 2.1: For  at ,
the slope using  is .

Tangent Line

The line that the secant lines
approach as  approaches . The
slope of this line measures the rate
of change (the derivative) of the
function at .

Solving the Tangent Problem involves taking
a limit.

Instantaneous
Velocity

The value that the average velocities
approach as the time interval
approaches zero. It is the rate of
change of the position function .

Example 2.2: A rock dropped from  with
height . Average velocity
approaching  is between  and 

 (Guess: ).

Reminder: The process of letting  or  approach  in an expression is called taking a limit.

Check the demo:

https://calc1.drbin.top/outputs/secant_to_tangent.gif
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B. The Area Problem and Integral Calculus

Core Concept: Finding the area between a function's graph and the -axis over an interval.

Approximation: The area is approximated by dividing the interval into thin rectangles and summing their areas.

Integral Calculus: As the widths of the rectangles become smaller (approach zero), the sums of the areas approach the exact
area. Limits of this type serve as the basis for the definition of the definite integral.

Example 2.3: Estimating the area under  over  using three rectangles yields an area estimate of 
.

 

II. The Limit of a Function (2.2)

A. Intuitive Definition of a Limit

Definition: Let  be defined in an open interval containing , possibly excluding  itself, and let  be a real number. If all values
of  approach the single real number  as the -values approach , then the limit of  as  approaches  is .
Notation: .

Basic Limits (Theorem 2.1):

1. .
2.  (where  is a constant).

Example (Graphical Evaluation):
Example 2.6: For the function shown in Figure 2.15 (where  has a defined value not
on the curve), as  approaches  from either side, the values  approach . Thus, .

x

f(x) = x +2 1 [0, 3] 1 + 2 +
5 = 8 units2

f a a L

f(x) L x a f(x) x a L

lim ​ f(x) =x→a L

lim ​ x =x→a a

lim ​ c =x→a c c

f(−1)
x −1 f(x) 3 lim ​ f(x) =x→−1 3



Reminder: The limit can exist even if
the function value  is undefined, or if  exists but is different from .

B. Limits That Fail to Exist (DNE)

For the limit of a function to exist, the functional values must approach a single real-number value at that point.

Example (Oscillation):
Example 2.7: For , as  approaches 0, the -values do not approach any single
value; they oscillate wildly between  and . Therefore,  does not exist (DNE).

C. One-Sided Limits

One-sided limits provide a more accurate description of function behavior, especially when a two-sided limit fails to exist.

f(a) f(a) L

f(x) = sin(1/x) x y

−1 1 lim ​ sin(1/x)x→0



Type Notation Description Citation

Limit from the Left  approaches  from values .

Limit from the Right  approaches  from values .

Theorem 2.2: Relating One-Sided and Two-Sided Limits
  if and only if  and 
.

Example (Jump Discontinuity):
Example 2.8: For the piecewise function  near  (Figure 2.18):

.
 .
Since the one-sided limits are different, the two-sided limit  DNE.

D. Infinite Limits and Vertical Asymptotes (VA)

Definition (Infinite Limit): A function has an infinite limit at  if its values increase or decrease without bound as 
approaches .

If  increases without bound: .
If  decreases without bound: .

Warning: When we write , we are describing the behavior of the function, not asserting that a limit
exists. If the limit is infinite, we always write  (or ) rather than DNE.

Vertical Asymptote (Definition): The line  is a vertical asymptote of the graph of  if any one-sided or two-sided limit
of  as  approaches  is infinite.

Example (VA):
Example 2.9 (and Figure 2.19): For :
 .
 .
The line 
 is a vertical asymptote.

lim ​ f(x) =x→a− L x a x < a

lim ​ f(x) =x→a+ L x a x > a

lim ​ f(x) =x→a L lim ​ f(x) =x→a− L

lim ​ f(x) =x→a+ L

f(x) x = 2 lim ​ f(x) =x→2− 3
lim ​ f(x) =x→2+ 0 lim ​ f(x)x→2

a x

a

f(x) lim ​ f(x) =x→a ∞ f(x) lim ​ f(x) =x→a −∞

lim ​ f(x) =x→a ∞
∞ −∞

x = a f

f(x) x a

f(x) = 1/x lim ​(1/x) =x→0− −∞ lim ​(1/x) =x→0+ ∞
x = 0



III. The Limit Laws (2.3)

Limit laws simplify the algebraic calculation of limits.

Theorem 2.5: Limit Laws (Assuming  and , with  being real numbers):

Law Formula Condition

Sum Law

Difference Law

Product Law

Quotient Law

Power Law  is a positive integer

A. Limits of Polynomial and Rational Functions

Theorem 2.6 (Direct Substitution):
Polynomials : .

Rational Functions : If  is in the domain ( ), then .

Example 2.16:
 .

Since  is in the domain, we substitute: .

lim ​ f(x) =x→a L lim ​ g(x) =x→a M L,M

lim ​(f(x) +x→a g(x)) = L + M

lim ​(f(x) −x→a g(x)) = L − M

lim ​(f(x)g(x)) =x→a LM

lim ​ ​ =x→a g(x)
f(x)

​

M
L M = 0

lim ​[f(x)] =x→a
n Ln n

p(x) lim ​ p(x) =x→a p(a)

r(x) = p(x)/q(x) a q(a) = 0 lim ​ r(x) =x→a r(a)

lim ​ ​x→3 x −22
x −6x+52

x = 3 ​ =3 −22
3 −6(3)+52

​ =7
9−18+5 − ​7

4



B. Additional Techniques for the Indeterminate Form 

If direct substitution yields , the limit may still exist, and we must find a function  identical to  everywhere except at .

We see that

Evaluation Strategies (Problem-Solving Strategy 2.3):

1. Factoring and Canceling: Factor polynomials to cancel common factors.

Example 2.17:

Evaluating a Limit by Factoring and Canceling

Evaluate. 

Solution

Step 1. The function  is undefined for . In fact, if we substitute 3 into the function we get ,
which is undefined. Factoring and canceling is a good strategy:

Step 2. For all , . Therefore,

Step 3. Evaluate using the limit laws:

0/0

​0
0 g(x) f(x) a

​ ​ =
x→1
lim

x − 1
x − 12

​ ​ =
x→1
lim

x − 1
(x − 1)(x + 1)

​(x +
x→1
lim 1) = 2

​ ​ =
x→3
lim

x − 3
x − 92

​ =
x→3
lim

x − 3
(x − 3)(x + 3)

​(x +
x→3
lim 3) = 6.

​ ​

x→3
lim 2x −5x−32

x −3x2

f(x) = ​2x −5x−32
x −3x2

x = 3 0/0

​ ​ =
x→3
lim

2x − 5x − 32

x − 3x2

​ ​

x→3
lim

(x − 3)(2x + 1)
x(x − 3)

x = 3 ​ =2x −5x−32
x −3x2

​2x+1
x

​ ​ =
x→3
lim

(x − 3)(2x + 1)
x(x − 3)

​ ​

x→3
lim

2x + 1
x

3



2. Multiplying by the Conjugate: Used if an expression involves a square root difference (e.g., ).

Evaluating a Limit by Multiplying by a Conjugate

Evaluate 

Solution

Step 1.  has the form  at . Let’s begin by multiplying by , the conjugate of , on the
numerator and denominator:

Step 2. We then multiply out the numerator. We don’t multiply out the denominator because we are hoping that the 
in the denominator cancels out in the end:

Step 3. Then we cancel:

Step 4. Last, we apply the limit laws:

3. Simplifying Complex Fractions: Simplify the fraction algebraically first.

Evaluating a Limit by Simplifying a Complex Fraction

Evaluate 

Solution

Step 1.  has the form  at 1. We simplify the algebraic fraction by multiplying by :

Step 2. Next, we multiply through the numerators. Do not multiply the denominators because we want to be able to cancel
the factor :

Step 3. Then, we simplify the numerator:

​ ​ =
x→3
lim

2x + 1
x

​

7
3

​ −x + 2 1

​ ​

x→−1
lim

x+1
​−1x+2

​

x+1
​−1x+2 0/0 −1 ​ +x + 2 1 ​ −x + 2 1

​ ​ =
x→−1
lim

x + 1
​ − 1x + 2

​ ​ ⋅
x→−1
lim

x + 1
​ − 1x + 2

​

​ + 1x + 2
​ + 1x + 2

(x + 1)

= ​ ​

x→−1
lim

(x + 1)( ​ + 1)x + 2
x + 1

= ​ ​

x→−1
lim

​ + 1x + 2
1

​ ​ =
x→−1
lim

​ + 1x + 2
1

​

2
1

​ ​

x→1
lim

x−1
​− ​

x+1
1

2
1

​

x−1
​− ​x+1

1
2
1

0/0 2(x + 1)/2(x + 1)

​ ​ =
x→1
lim

x − 1
​ − ​

x+1
1

2
1

​ ​ ⋅
x→1
lim

x − 1
​ − ​

x+1
1

2
1

​

2(x + 1)
2(x + 1)

(x − 1)

= ​ ​

x→1
lim

2(x − 1)(x + 1)
2 − (x + 1)

= ​ ​

x→1
lim

2(x − 1)(x + 1)
−x + 1



Step 4. Now we factor out  from the numerator:

Step 5. Then, we cancel the common factors of :

Step 6. Last, we evaluate using the limit laws:

4. Evaluating a Two-Sided Limit Using the Limit Laws

For the piecewise function:

evaluate each of the following limits:

a. 

b. 

c. 

Solution

a. When  (i.e.,  approaches 2 from values less than 2), the function is defined by . Using the limit
laws:

b. When  (i.e.,  approaches 2 from values greater than or equal to 2), the function is defined by 
. Using the limit laws:

−1

= ​ ​

x→1
lim

2(x − 1)(x + 1)
−(x − 1)

(x − 1)

= ​ ​

x→1
lim

2(x + 1)
−1

​ ​ =
x→1
lim

2(x + 1)
−1

− ​

4
1

f(x) = ​ ​{4x − 3
(x − 3)2

if x < 2
if x ≥ 2

​f(x)
x→2−
lim

​f(x)
x→2+
lim

​f(x)
x→2
lim

x → 2− x f(x) = 4x − 3

​f(x) =
x→2−
lim ​(4x −

x→2−
lim 3) = 4 ⋅ 2 − 3 = 5

x → 2+ x f(x) = (x −
3)2



c. For the two-sided limit  to exist, the left-hand limit and right-hand limit must be equal. Since 

and  are not equal:

C. The Squeeze Theorem

Theorem 2.7 (The Squeeze Theorem):
If  over an open interval containing , and 
and  (where  is a real number), then .

Key Trigonometric Limit:
This theorem is crucial for proving that .

Proof:

Squeeze Theorem Proof

1. Geometric Inequality (for 

In the unit circle:

Dividing by :

Taking reciprocals:

2. Limits of Bounding Functions

​f(x) =
x→2+
lim ​(x −

x→2+
lim 3) =2 (2 − 3) =2 (−1) =2 1

​f(x)
x→2
lim ​f(x) =

x→2−
lim 5

​f(x) =
x→2+
lim 1

​f(x) does not exist
x→2
lim

h(x) ≤ f(x) ≤ g(x) a lim ​ h(x) =x→a L

lim ​ g(x) =x→a L L lim ​ f(x) =x→a L

lim ​ ​ =θ→0 θ

sin(θ) 1

0 < θ < ​)2
π

sin(θ) ≤ θ ≤ tan(θ)

sin(θ) > 0

1 ≤ ​ ≤
sin(θ)
θ

​

cos(θ)
1

cos(θ) ≤ ​ ≤
θ

sin(θ)
1



3. Squeeze Theorem Application

Since for all :

and

By the Squeeze Theorem:

4. Alternative Area Proof

Using sector area comparison:

Multiplying by 2:

Dividing by :

Taking reciprocals gives the same inequality.

Check the gif demo:

https://calc1.drbin.top/outputs/sin_theta_limit_english.gif

IV. Continuity (2.4)

Intuitive Definition: A function is continuous if its graph can be traced with a pencil without lifting it from the page.

A. Continuity at a Point

Definition: A function  is continuous at a point  if and only if three conditions are satisfied:

1.  is defined. (Prevents a hole/gap where the function value is missing).
2.  exists. (Prevents a jump or oscillation).
3. . (Ensures the limit value matches the function value).

Example (Continuity Check):

Example 2.28: Determine if  for  and  is continuous at .

​ cos(θ) =
θ→0
lim 1

​ 1 =
θ→0
lim 1

θ ∈ (0, ​)2
π

cos(θ) ≤ ​ ≤
θ

sin(θ)
1

​ cos(θ) =
θ→0
lim ​ 1 =

θ→0
lim 1

​ ​ =
θ→0
lim

θ

sin(θ)
1

​ sin(θ) cos(θ) ≤
2
1

​θ ≤
2
1

​ tan(θ)
2
1

sin(θ) cos(θ) ≤ θ ≤ tan(θ)

sin(θ)

cos(θ) ≤ ​ ≤
sin(θ)
θ

​

cos(θ)
1

f a

f(a)
lim ​ f(x)x→a

lim ​ f(x) =x→a f(a)

f(x) = ​

x−1
x −12

x = 1 f(1) = 2 x = 1

https://calc1.drbin.top/outputs/sin_theta_limit_english.gif


1.  (Defined).

Counterexample: f(a) is not defined.

2.  (Exists, calculated by simplifying).

Counterexample:  f(x) does not exist.

3. . (Satisfied).

Counterexample: .

Conclusion:  is continuous at 1.

B. Types of Discontinuities

f(1) = 2

lim ​ f(x) =x→1 2

lim ​x→a

lim ​ f(x) =x→1 2 = f(1)

lim ​ f(x) =x→a  f(a)

f



If  is discontinuous at , the discontinuity is classified:

1. Removable Discontinuity:  exists (is a real number ), but  is either undefined or 
. (Intuitively, a "hole" in the graph).
Example 2.30:  at .  exists, but  is

undefined. This is a removable discontinuity.
2. Jump Discontinuity: Both  and  exist (as real numbers) but are unequal.
Example 2.31:

The piecewise function from Example 2.27 at . Since  and  exist but differ, it has a
jump discontinuity.

3. Infinite Discontinuity:  or one of the one-sided limits is . (Occurs at a vertical asymptote).
Example
2.32:  at . Since , it has an infinite discontinuity.

C. The Intermediate Value Theorem (IVT)

Theorem 2.11 (IVT): If  is continuous over a closed, bounded interval , and  is any real number between  and 
, then there exists a number  in  satisfying .

Key Application: Finding zeros (roots) of a function.

Example 2.36: Show  has at least one zero over .
Since  is a polynomial, it is continuous.

 and .
Since  and , and  is between  and , the IVT

guarantees a root  exists in  such that .

Reminder (IVT Requirement): The function must be continuous over the closed interval  for the theorem to apply.

V. The Precise Definition of a Limit (2.5)

This converts the intuitive idea of limits into a formal, rigorous mathematical definition (  definition).

A. Quantifying Closeness

 (Epsilon): Represents the positive distance from the limit .  means  is closer than  to .
  (Delta):
Represents the positive distance from .  means  is closer than  to , and .

B. The Epsilon-Delta Definition

f a

lim ​ f(x)x→a L f(a) lim ​ f(x) =x→a 
f(a) f(x) = ​

x−2
x −42

x = 2 lim ​ f(x) =x→2 4 f(2)

lim ​ f(x)x→a− lim ​ f(x)x→a+

x = 3 lim ​ f(x)x→3− lim ​ f(x)x→3+

lim ​ f(x)x→a ±∞
f(x) = 1/(x + 1) x = −1 lim ​ f(x) =x→−1 ±∞

f [a, b] z f(a)
f(b) c [a, b] f(c) = z

f(x) = x −3 4x + 2 [0, 1] f(x)
f(0) = 2 f(1) = 1 −3 4(1) + 2 = −1 f(0) > 0 f(1) < 0 z = 0 −1 2

c [0, 1] f(c) = 0

[a, b]

ϵ − δ

ϵ L ∣f(x) − L∣ < ϵ f(x) ϵ L δ

a 0 < ∣x − a∣ < δ x δ a x = a



Definition:
  if, for every , there exists a  such that if , then .

Part of Definition Interpretation Citation

For every Universal Quantifier: For every positive distance  from .

There exists a Existential Quantifier: There is a positive distance  from .

Tool for Proofs: The Triangle Inequality states that for any real numbers  and , .

Example (Linear Proof - Example 2.39):
Statement to prove: .
Proof Sketch (Finding ): We start
with :
 
 
 


Choose: .
Conclusion: If , then . Therefore, the limit
is 7.

C. Precise Definition of Infinite Limits

The  definition can be modified for infinite limits using  (an arbitrarily large positive number) instead of .

Definition ( ):  if, for every , there exists  such that if , then .

Definition ( ):  if, for every , there exists  such that if , then 
.

lim ​ f(x) =x→a L ϵ > 0 δ > 0 0 < ∣x − a∣ < δ ∣f(x) − L∣ < ϵ

ϵ > 0 ϵ L

δ > 0 δ a

a b ∣a + b∣ ≤ ∣a∣ + ∣b∣

lim ​(2x +x→3 1) = 7 δ

∣f(x) − L∣ < ϵ ∣(2x + 1) − 7∣ < ϵ ⇒ ∣2x − 6∣ < ϵ ⇒ 2∣x − 3∣ < ϵ ⇒ ∣x − 3∣ < ϵ/2

δ = ϵ/2 0 < ∣x − 3∣ < ϵ/2 ∣(2x + 1) − 7∣ = 2∣x − 3∣ < 2(ϵ/2) = ϵ

ϵ − δ M ϵ

∞ lim ​ f(x) =x→a ∞ M > 0 δ > 0 0 < ∣x − a∣ < δ f(x) > M

−∞ lim ​ f(x) =x→a −∞ N < 0 δ > 0 0 < ∣x − a∣ < δ f(x) <
N


